
Principal Software Architect
Discussion Syllabus

Understanding the Problem Space
(Read pages 1-5 of “Use Cases” white paper [1])
Use cases to iteratively model the problem space

Actors (aka Roles)
Enumerate usage scenarios

Define glossary of terms
Model business information – key business concepts, relationships, and attributes
Elicit project parameters

Quality
Constraints
Risks

Elicit priorities
Must have, need, nice to have
Importance of use, frequency of use
Risk

Project Estimation
Determine project’s required quality constraint ranging from prototype to mission or life-critical
system
Cost-Schedule-Features triangle
(Read “The Triple Constraint: The Project Management Triangle of Scope, Time, and Cost” [2])
Estimation “Q”

“T Shirt Size” estimates
Optimistic-Nominal-Pessimistic estimates
Detailed estimates

Basis of Estimate – Work Breakdown Structure (WBS)
Project task granularity

Feature Points verses Code Size (SLOC)
(Read “It’s Not About Lines of Code” [3])
Correlating feature points to effort-hours

BCWS verses BCWP verses ACWP
(Read “ACWP (Earned Value Analysis) [4]”)

Communication
Goal is to achieve common understanding of problem and solution space

One of an Architect’s important responsibilities is to facilitate understanding among project
stakeholders as well as project team members
Misunderstanding among team members is a key project risk

English is an ambiguous language
Avoid pronouns (“user”, “it”, “he”, “they”, “that”)
Define business and technical terms; document in project glossary

Strive for concise, clear, and accurate speech
Resolving conflict

Disagree well (Read “How to Disagree” [5])

Structured disagreement (Read “Reaching Consensus from Conflicting Opinions” [6])

Designing the Solution Space
Model proposed solution from User-Centered Design perspective

(Read “User Centered Design for Different Project Types” [7])
Goal is to propose solution to client to gain approval and funding
Elaborate use cases (Read pages 6-13 of “Use Cases” white paper [1])
Define Logical UI Model
Elaborate Logical UI Model into Physical UI Model
Scope project into phases, estimate cost and schedule of each
Identify deliverables
Determine Build verses Buy

Agile Model-Driven Development
(Read “Agile Model-Driven Development (AMDD): The Key to Scaling Agile Software
Development [8])
Use cases to understand user workflows and elicit needed features
UML

Class diagrams to model information concepts and interrelationships
Collaboration diagrams to identify key components, interfaces, and time flows
State diagrams to model system states and state transitions

Define system architecture
Define components; allocate responsibilities to each

Using Java as a design specification language
(Read “Java theory and practice: I have to document THAT?” [9])

Define interfaces between components, information passed over interfaces

Identity information to be persisted
Identify risks

(Read “Early Warning Signs of IT Project Failure: The Dominant Dozen” [10])
(Read “Risks with 100% Probability” [11])

Design for extensibility (aka “future-proof designing”)
(Read “The Open-Closed Principle” [12])

Project Management
(Read “Agile Model-Driven Development [13])
Elephant in Room – Requirements verses Design verses Code

Cost of fixing bugs (Read “Cost of Fixing Software Bugs” [14])
Allocating effort between requirements-design-implementation

(Review “Agile Iterations” [15])
Iterative phases

Build system “skeleton” first to rapidly get something working
Incrementally add features “flesh” onto system “skeleton”

Focus first on must-have and frequently-used features
Defer nice-to-have features to later in project

Prototype risks early to “fail fast”
Sprints

From scrum manifesto: “The heart of Scrum is a Sprint, a time-box of one month or less
during which a “Done”, useable, and potentially releasable product Increment is created. “
Potentially Shipping product: see definition at
https://innolution.com/resources/glossary/potentially-shippable-product-increment

Scrum
“The Daily Scrum is a 15-minute time-boxed event for the Development Team… At it, the
Development Team plans work for the next 24 hours….The Development Team or team
members often meet immediately after the Daily Scrum for detailed discussions, or to adapt,
or replan, the rest of the Sprint’s work.”
(Read “How to Lead Meetings People Actually Want To Go To” [16])

Architecture Patterns
Enterprise architecture patterns
Design patterns (e.g., Gang of Four)

References

1. Steve Nies, 2000, "Use Cases – Methodology for Capturing Functional Requirements" White
Paper, Modus Operandi, December 28, http://www.stevenies.com/wp-
content/uploads/2019/09/UseCaseOverview.pdf.

2. Kate Eby, 2017, “The Triple Constraint: The Project Management Triangle of Scope, Time,
and Cost”, September 20, https://www.smartsheet.com/triple-constraint-triangle-theory

3. Charles Connell, 2013, “It’s Not About Lines of Code”, March 15,
http://www.stevenies.com/wp-content/uploads/2019/09/Its-Not-About-Lines-of-Code.pdf

4. Bernie Roseke, 2016, “ACWP (Earned Value Analysis)”, May 20,
https://www.projectengineer.net/acwp-earned-value-analysis/

5. Paul Graham, 2008, “How to Disagree”, March,
http://www.paulgraham.com/disagree.html.

6. Steve Nies, 2015, “Reaching Consensus from Conflicting Opinions”, February 9,
http://www.stevenies.com/team-development-reaching-consensus-from-conflicting-
opinions/

7. Jack Scanlon and Lynn Percival, 2002, “User-Centered Design for Different Project Types”,
developerWorks, March, http://www.stevenies.com/wp-
content/uploads/2019/09/userCenteredDesign.pdf

8. Scott Ambler, 2012, “Agile Model Driven Development (AMDD): The Key to Scaling Agile
Software Development”, http://www.stevenies.com/wp-content/uploads/2019/09/Agile-
Model-Driven-Development-AMDD_-The-Key-to-Scaling-Agile-Software-Development.pdf

9. Brian Goetz, 2002, “Java Theory and Practice: I Have to Document THAT?”, developerWorks,
August, http://www.stevenies.com/wp-content/uploads/2019/09/goodJavaDoc.pdf

10. Leon Kappelman, Robert McKeeman, Lixuan Zhang; 2006, “Early Warning Signs of IT Project
Failure: The Dominant Dozen”, http://www.stevenies.com/wp-
content/uploads/2019/09/projectFailure.pdf

11. Dr. David Hillson, 2014, “Risks with 100% Probability”, Executive Brief,
http://www.stevenies.com/wp-content/uploads/2019/09/Risks-with-100-Probability.pdf

12. Author Unknown, “The Open-Closed Principle”, http://www.stevenies.com/wp-
content/uploads/2019/09/Open-closed-principle.pdf

13. Steve Nies, 2002, “Agile Model-Driven Development”, http://www.stevenies.com/wp-
content/uploads/2019/09/amdd.pdf

14. Author Unknown, 2009, “Cost of Fixing Software Bugs”, November 25,
http://www.stevenies.com/wp-content/uploads/2019/09/Cost-of-Fixing-Software-Bugs.pdf

15. Steve Nies, 2018, “Agile Iterations”, http://www.stevenies.com/wp-
content/uploads/2019/09/agileIterations.pdf

16. H.V. MacArthur, 2018, “How to Lead Meetings People Actually Want To Go To”, December
13, http://www.stevenies.com/wp-content/uploads/2019/09/Good-Meetings.pdf

Further Reading

1. Various Authors, 2009, "97 Things Every Software Architect Should Know", O’Reilly,
http://www.stevenies.com/wp-content/uploads/2019/09/97-Things-Every-Software-
Architect-Should-Know.pdf

2. Amy Mortensen, 2015, “The Hidden Cost of Context Switching”, July 10,
http://www.stevenies.com/wp-content/uploads/2019/09/The-Hidden-Cost-of-Context-
Switching.pdf

